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Abstract. In this note we obtain and discuss formulae for the number of even per-

mutations (of an n-element set) having exactly k fixed points. Moreover, we obtain

generating functions for these numbers. We also obtain similar results for the number

of odd permutations.
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1. Introduction and Preliminaries

Let Xn = {1, 2, . . . n} be a finite n-element set, and let Sn and An be the symmet-
ric and alternating groups of Xn, respectively. Another closely related algebraic
structure to Sn and An is In, the semigroup of partial one-one transformations
of Xn. This semigroup is also known as the finite symmetric inverse semigroup
of Xn. This paper investigates certain combinatorial properties of An.

Combinatorial properties of Sn have been studied over a long period and
many interesting and delightful results have emerged (see, for example [1, 3, 4,
5, 12]). In particular, the number of permutations (of Xn) having exactly k fixed
points and their generating functions are known [12]. Recently, inspired by the
works of Gomes and Howie[8], Laradji and Umar [9] obtained some corresponding
results in the semigroup In. However, the number of even (odd) permutations
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(of Xn) having exactly k fixed points and their generating functions do not seem
to have been studied. The only exception is the number of even derangements
(permutations without fixed points) which we found in [12] recorded as sequence
number A003221, see also [11]. The number of even derangements could also be
easily deduced from [2, Corollary 2.7]. At the end of this introductory section
we gather some known combinatorial results that we shall need in later sections.
In Section 2 we establish certain combinatorial results for An, the main result
being proposition 2.2 which gives recurrence formulae for en, the number of even
derangements α (of Xn), having observed that the number of permutations with
exactly k fixed points can be deduced from the number of derangements. In
Section 3 we obtain exponential generating functions for the number of even
permutations with exactly k fixed points, and deduce that for the number of
odd permutations with exactly k fixed points.

Recall from [6] that an even permutation is a permutation which can be
expressed as a product of an even number of cycles of even length and/or a
product of any number of cycles of odd length. A permutation that is not even
is called odd. The set of even permutations of Xn, called the alternating group
is usually denoted by An.

Recall also that, a derangement σ is a permutation such that σ(x) 6= x, that
is, a permutation without fixed points. The number of derangements of Xn is
usually denoted by dn, while the number of permutations having exactly k fixed
points will be denoted by d(n, k). We list some known combinatorial results
which may be found in [1, 3, 12], that we shall need later.

Result 1.1 Let dn be as defined above. Then

dn = n!
n∑

i=0

(−1)i

i!
= (n− 1)(dn−1 + dn−2) = ndn−1 + (−1)n,

where d0 = 1.

Result 1.2 [10, p. 24]. Suppose that X is some set of objects and P is a set
of properties. For R ⊆ P , let N=(R) be the number of objects in X that have
exactly the properties in R and none of the properties in P \R. We let N≥(R)
denote the number of objects in X that have all the properties in R and possibly
some of those in P \R. The principle of inclusion-exclusion says that

N=(R) =
∑

R⊆Q⊆P

(−1)|Q\R|N≥(Q).

Result 1.3 Let An be the alternating group on Xn. Then |An| = n!/2 (n ≥ 2),
where |A0| = 1 = |A1|.

Result 1.4 Let d(x, k) =
∑

n≥0

d(n, k)
n!

xn. Then d(x, k) converges for |x| < 1 to

the function
xke−x

k!(1− x)
.
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Corollary 1.5 Let d(x) =
∑

n≥0

dn

n!
xn. Then d(x) converges for |x| < 1 to the

function e−x

(1−x) .

2. Even and Odd Permutations

As in [9] we define an equivalence on An by the equality of number of fixed
points, that is,

e(n, k) = |{α ∈ An : f(α) = k}|, (2.1)

where f(α) = |{x ∈ Xn : xα = x}|. Then it is not difficult to see that

e(n, k) =
(

n
k

)
e(n− k, 0) =

(
n
k

)
en−k. (2.2)

Thus to compute e(n, k) it is sufficient to compute e(n, 0) = en. However, note
that en is the number of even permutations without fixed points, that is, the
number of even derangements. Now we have

Theorem 2.1 Let en be as defined in (2.2). Then e0 = 1, e1 = 0, and for all
n ≥ 2, we have

en =
n!
2

n−2∑

i=0

(−1)i

i!
+ (−1)n−1(n− 1).

Proof. By the Inclusion-Exclusion Principle we see that

en =
n∑

i=0

(−1)i

(
n
i

)
|An−i| =

n−2∑

i=0

(−1)i

(
n
i

)
|An−i|+ (−1)n−1n + (−1)n

=
n−2∑

i=0

(−1)i n!
(n− i)!i!

.
(n− i)!

2
+ (−1)n−1(n− 1)

=
n!
2

n−2∑

i=0

(−1)i

i!
+ (−1)n−1(n− 1).

The number en satisfies some recurrences similar to those for dn in Result
1.1.

Proposition 2.2 Let en be as defined in (2.2). Then
(a) en = (n− 1)(en−1 + en−2) + (−1)n−1(n− 1), e0 = 1, e1 = 0;
(b) en = nen−1 + (−1)n(n− 2)(n + 1)/2, e0 = 1.
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Proof. (a) Using Theorem 2.1 and algebraic manipulations successively we have

en =
n!
2

n−2∑

i=0

(−1)i

i!
+ (−1)n−1(n− 1)

= (n− 1)

[
{(n− 1) + 1}(n− 2)!

2

n−2∑

i=0

(−1)i

i!

]
+ (−1)n−1(n− 1)

= (n− 1)

[
(n− 1)(n− 2)!

2

n−2∑

i=0

(−1)i

i!
+

(n− 2)!
2

n−2∑

i=0

(−1)i

i!

]

+(−1)n−1(n− 1)

= (n− 1)

[
(n− 1)!

2

n−3∑

i=0

(−1)i

i!
+

(n− 1)!
2

· (−1)n−2

(n− 2)!
+

(n− 2)!
2

n−4∑

i=0

(−1)i

i!

+
(n− 2)!

2
· (−1)n−3

(n− 3)!
+

(n− 2)!
2

.
(−1)n−2

(n− 2)!

]
+ (−1)n−1(n− 1)

= (n− 1)

[
(n− 1)!

2

n−3∑

i=0

(−1)i

i!
+

(−1)n−2

2
.(n− 1) +

(n− 2)!
2

n−4∑

i=0

(−1)i

i!

+
(−1)n−3

2
.(n− 2) +

(−1)n−2

2

]
+ (−1)n−1(n− 1)

= (n− 1)

[
(n− 1)!

2

n−3∑

i=0

(−1)i

i!
+

(n− 2)!
2

n−4∑

i=0

(−1)i

i!
+ (−1)n−2

]

+(−1)n−1(n− 1)

= (n− 1)

[
(n− 1)!

2

n−3∑

i=0

(−1)i

i!
+

(−1)n−2(n− 2)
1

+
(n− 2)!

2

n−4∑

i=0

(−1)i

i!

+
(−1)n−3(n− 3)

1

]
+ (−1)n−1(n− 1)

= (n− 1)(en−1 + en−2) + (−1)n−1(n− 1),

as required.
(b) As in (a) above, using Theorem 2.1 and algebraic manipulations succes-

sively we have

en =
n!
2

n−2∑

i=0

(−1)i

i!
+ (−1)n−1(n− 1)

= n

[
(n− 1)!

2

n−3∑

i=0

(−1)i

i!
+

(n− 1)!
2

.
(−1)n−2

(n− 2)!

]
+ (−1)n−1(n− 1)

= n

[
(n− 1)!

2

n−3∑

i=0

(−1)i

i!
+

(n− 1)
2

.(−1)n−2

]
+ (−1)n−1(n− 1)
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= n

[
(n− 1)!

2

n−3∑

i=0

(−1)i

i!
+ (−1)n−2(n− 2)− (−1)n−2

2
.(n− 3)

]

+(−1)n−1(n− 1)

= nen−1 + (−1)n−1 1
2
n(n− 3) + (−1)n−1(n− 1)

= nen−1 + (−1)n−1 1
2
(n− 2)(n + 1),

as required.

We now turn our attention to finding the number of odd permutations with
k fixed points. Let

e′(n, k) = |{α ∈ A
′
n : f(α) = k}|. (2.3)

Then it is not difficult to see that

e′(n, k) =
(

n
k

)
e′(n− k, 0) =

(
n
k

)
e
′
n−k. (2.4)

As in the even case above, to compute e′(n, k) it is sufficient to compute e′(n, 0) =
e
′
n. Also, note that e

′
n is the number of odd permutations without fixed points,

that is, the number of odd derangements. We can certainly deduce results for
e
′
n in exactly the same manner as above, however, we shall take advantage of

Theorem 2.1 and Result 1.1, since it is clear that

e
′
n = dn − en

= n!
n∑

i=0

(−1)i

i!
−

[
n!
2

n−2∑

i=0

(−1)i

i!
+ (−1)n−1(n− 1)

]

=
n!
2

n−2∑

i=0

(−1)i

i!
.

Thus we have proved the following result

Theorem 2.3 Let e
′
n be as defined in (2.4). Then e

′
n =

n!
2

n−2∑

i=0

(−1)i

i!
.

Proposition 2.4 Let e
′
n be as defined in (2.4). Then

(a) e
′
n = (n− 1)(e

′
n−1 + e

′
n−2) + (−1)n(n− 1), e

′
0 = e

′
1 = 0;

(b) e
′
n = ne

′
n−1 + (−1)n(n− 1)(n− 2)/2, e

′
0 = 0.

Proof. It follows directly from Result 1.1 and Proposition 2.2.

Alternative recurrences the first of which is in [12] are
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Proposition 2.5 Let en and e
′
n be as defined in (2.2) and (2.4), respectively.

Then
(a) en = 1

2 [dn − (−1)n(n− 1)] , d0 = 1;

(b) e
′
n = 1

2 [dn + (−1)n(n− 1)] , d0 = 1.

Remark 2.6. The sequences e(n, k) and e′(n, k) with the exception of en =
e(n, 0), as at the time of writing are not yet listed in Sloane’s encyclopaedia
of integer sequences [12]. For some selected values of e(n, k) and e′(n, k) see
Tables 1 and 2, respectively.

n\k 0 1 2 3 4 5 6 7 Σe(n, k)
0 1 1
1 0 1 1
2 0 0 1 1
3 2 0 0 1 3
4 3 8 0 0 1 12
5 24 15 20 0 0 1 60
6 130 144 45 40 0 0 1 360
7 930 910 504 105 70 0 0 1 2520

Table 1. e(n, k)

n\k 0 1 2 3 4 5 6 7 Σe′(n, k)
0 0 0
1 0 0 0
2 1 0 0 1
3 0 3 0 0 3
4 6 0 6 0 0 12
5 20 30 0 10 0 0 60
6 135 120 90 0 15 0 0 360
7 924 945 420 210 0 21 0 0 2520

Table 2. e’(n, k)

3. Generating Functions

Let f(x) be the exponential generating function for en. Then using Proposition
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2.5, Result 1.4 and algebraic manipulations successively we see that

f(x) =
∑

i≥0

ei
xi

i!
=

∑

i≥0

1
2

[
di − (−1)i(i− 1)

] xi

i!

=
1
2

∑

i≥0

di
xi

i!
− 1

2

∑

i≥0

(−1)i(i− 1)
xi

i!

=
1
2

e−x

1− x
+

x

2

∑

i≥1

(−1)i−1 xi−1

(i− 1)!
+

1
2

∑

i≥0

(−1)i x
i

i!

=
1
2

e−x

1− x
+

x

2
e−x +

1
2
e−x

=
(1− x2/2)

1− x
e−x.

Proposition 3.1 Let fk(x) be the exponential generating function for ei,k =(
i
k

)
ei−k. Then fk(x) =

xk(1− x2/2)e−x

k!(1− x)
.

Proof.

lhs = fk(x) =
∑

i≥k

(
i
k

)
ei−k · xi

i!

=
∑

i≥k

ei−kxi

k!(i− k)!

=
xk

k!

∑

i≥k

ei−kxi−k

(i− k)!

=
xk

k!
f(x) =

xk(1− x2/2)e−x

k!(1− x)
= rhs,

as required.

Proposition 3.2 Let gk(x) be the exponential generating function for e′(i, k) =(
i
k

)
e′i−k. Then gk(x) =

xk(x2/2)e−x

k!(1− x)
.

Proof. From the obvious fact that d(i, k) = e(i, k) + e′(i, k), Result 1.4 and
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Proposition 3.1 it follows that

xke−x

k!(1− x)
=

∑

i≥k

d(i, k)
xi

i!
=

∑

i≥r

[e(i, r) + e′(i, r)]
xi

i!

=
∑

i≥k

e(i, k)
xi

i!
+

∑

i≥k

e′(i, k)
xi

i!

=
xk(1− x2/2)e−x

k!(1− x)
+ gk(x).

Hence the result follows.
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