Southeast Asian Bulletin of Mathematics (2008) 32: 823-830

Southeast Asian Bulletin of Mathematics © SEAMS. 2008

Some Combinatorial Properties of the Alternating Group

Bashir Ali

Department of Mathematics, Nigerian Defence Academy University, Kaduna, Nigeria E-mail: bashirklgi@yahoo.com

A. Umar

Department of Mathematics Statistics, Sultan Qaboos University, Al-Khod 123, Muscat, Sultanate of Oman E-mail: aumarh@squ.edu.om

2000 Mathematics Subject Classification: 20B35, 05A10, 05A15

Abstract. In this note we obtain and discuss formulae for the number of even permutations (of an *n*-element set) having exactly k fixed points. Moreover, we obtain generating functions for these numbers. We also obtain similar results for the number of odd permutations.

Keywords: Permutation; Derangement; Even (odd) permutation; Partial one-one transformation; Exponential generating function.

1. Introduction and Preliminaries

Let $X_n = \{1, 2, ..., n\}$ be a finite *n*-element set, and let S_n and A_n be the symmetric and alternating groups of X_n , respectively. Another closely related algebraic structure to S_n and A_n is I_n , the semigroup of partial one-one transformations of X_n . This semigroup is also known as the finite symmetric inverse semigroup of X_n . This paper investigates certain combinatorial properties of A_n .

Combinatorial properties of S_n have been studied over a long period and many interesting and delightful results have emerged (see, for example [1, 3, 4, 5, 12]). In particular, the number of permutations (of X_n) having exactly k fixed points and their generating functions are known [12]. Recently, inspired by the works of Gomes and Howie[8], Laradji and Umar [9] obtained some corresponding results in the semigroup I_n . However, the number of even (odd) permutations

Received December 7 2005, Accepted September 19 2007.

(of X_n) having exactly k fixed points and their generating functions do not seem to have been studied. The only exception is the number of even derangements (permutations without fixed points) which we found in [12] recorded as sequence number A003221, see also [11]. The number of even derangements could also be easily deduced from [2, Corollary 2.7]. At the end of this introductory section we gather some known combinatorial results that we shall need in later sections. In Section 2 we establish certain combinatorial results for A_n , the main result being proposition 2.2 which gives recurrence formulae for e_n , the number of even derangements α (of X_n), having observed that the number of permutations with exactly k fixed points can be deduced from the number of derangements. In Section 3 we obtain exponential generating functions for the number of even permutations with exactly k fixed points, and deduce that for the number of odd permutations with exactly k fixed points.

Recall from [6] that an *even* permutation is a permutation which can be expressed as a product of an even number of cycles of even length and/or a product of any number of cycles of odd length. A permutation that is not even is called *odd*. The set of even permutations of X_n , called the *alternating group* is usually denoted by A_n .

Recall also that, a derangement σ is a permutation such that $\sigma(x) \neq x$, that is, a permutation without fixed points. The number of derangements of X_n is usually denoted by d_n , while the number of permutations having exactly k fixed points will be denoted by d(n, k). We list some known combinatorial results which may be found in [1, 3, 12], that we shall need later.

Result 1.1 Let d_n be as defined above. Then

$$d_n = n! \sum_{i=0}^n \frac{(-1)^i}{i!} = (n-1)(d_{n-1} + d_{n-2}) = nd_{n-1} + (-1)^n,$$

where $d_0 = 1$.

Result 1.2 [10, p. 24]. Suppose that X is some set of objects and P is a set of properties. For $R \subseteq P$, let $N_{=}(R)$ be the number of objects in X that have exactly the properties in R and none of the properties in $P \setminus R$. We let $N_{\geq}(R)$ denote the number of objects in X that have all the properties in R and possibly some of those in $P \setminus R$. The principle of inclusion-exclusion says that

$$N_{=}(R) = \sum_{R \subseteq Q \subseteq P} (-1)^{|Q \setminus R|} N_{\geq}(Q).$$

Result 1.3 Let A_n be the alternating group on X_n . Then $|A_n| = n!/2$ $(n \ge 2)$, where $|A_0| = 1 = |A_1|$.

Result 1.4 Let $d(x,k) = \sum_{n\geq 0} \frac{d(n,k)}{n!} x^n$. Then d(x,k) converges for |x| < 1 to the function $\frac{x^k e^{-x}}{k!(1-x)}$.

Some Combinatorial Properties of the Alternating Group

Corollary 1.5 Let $d(x) = \sum_{n \ge 0} \frac{d_n}{n!} x^n$. Then d(x) converges for |x| < 1 to the function $\frac{e^{-x}}{(1-x)}$.

2. Even and Odd Permutations

As in [9] we define an equivalence on A_n by the equality of number of fixed points, that is,

$$e(n,k) = |\{\alpha \in A_n : f(\alpha) = k\}|, \qquad (2.1)$$

where $f(\alpha) = |\{x \in X_n : x\alpha = x\}|$. Then it is not difficult to see that

$$e(n,k) = \binom{n}{k} e(n-k,0) = \binom{n}{k} e_{n-k}.$$
(2.2)

Thus to compute e(n, k) it is sufficient to compute $e(n, 0) = e_n$. However, note that e_n is the number of even permutations without fixed points, that is, the number of even derangements. Now we have

Theorem 2.1 Let e_n be as defined in (2.2). Then $e_0 = 1, e_1 = 0$, and for all $n \ge 2$, we have

$$e_n = \frac{n!}{2} \sum_{i=0}^{n-2} \frac{(-1)^i}{i!} + (-1)^{n-1}(n-1).$$

Proof. By the Inclusion-Exclusion Principle we see that

$$e_n = \sum_{i=0}^n (-1)^i \binom{n}{i} |A_{n-i}| = \sum_{i=0}^{n-2} (-1)^i \binom{n}{i} |A_{n-i}| + (-1)^{n-1} n + (-1)^n$$

= $\sum_{i=0}^{n-2} (-1)^i \frac{n!}{(n-i)!i!} \cdot \frac{(n-i)!}{2} + (-1)^{n-1} (n-1)$
= $\frac{n!}{2} \sum_{i=0}^{n-2} \frac{(-1)^i}{i!} + (-1)^{n-1} (n-1).$

The number e_n satisfies some recurrences similar to those for d_n in Result 1.1.

Proposition 2.2 Let e_n be as defined in (2.2). Then

(a) $e_n = (n-1)(e_{n-1} + e_{n-2}) + (-1)^{n-1}(n-1), e_0 = 1, e_1 = 0;$ (b) $e_n = ne_{n-1} + (-1)^n(n-2)(n+1)/2, e_0 = 1.$

Proof. (a) Using Theorem 2.1 and algebraic manipulations successively we have

$$\begin{split} e_n &= \frac{n!}{2} \sum_{i=0}^{n-2} \frac{(-1)^i}{i!} + (-1)^{n-1} (n-1) \\ &= (n-1) \left[\frac{\{(n-1)+1\}(n-2)!}{2} \sum_{i=0}^{n-2} \frac{(-1)^i}{i!} \right] + (-1)^{n-1} (n-1) \\ &= (n-1) \left[\frac{(n-1)(n-2)!}{2} \sum_{i=0}^{n-2} \frac{(-1)^i}{i!} + \frac{(n-2)!}{2} \sum_{i=0}^{n-2} \frac{(-1)^i}{i!} \right] \\ &+ (-1)^{n-1} (n-1) \\ &= (n-1) \left[\frac{(n-1)!}{2} \sum_{i=0}^{n-3} \frac{(-1)^i}{i!} + \frac{(n-1)!}{2} \cdot \frac{(-1)^{n-2}}{(n-2)!} + \frac{(n-2)!}{2} \sum_{i=0}^{n-4} \frac{(-1)^i}{i!} \right. \\ &+ \frac{(n-2)!}{2} \cdot \frac{(-1)^{n-3}}{(n-3)!} + \frac{(n-2)!}{2} \cdot \frac{(-1)^{n-2}}{(n-2)!} \right] + (-1)^{n-1} (n-1) \\ &= (n-1) \left[\frac{(n-1)!}{2} \sum_{i=0}^{n-3} \frac{(-1)^i}{i!} + \frac{(-1)^{n-2}}{2} \dots (n-1) + \frac{(n-2)!}{2} \sum_{i=0}^{n-4} \frac{(-1)^i}{i!} \right. \\ &+ \frac{(-1)^{n-3}}{2} \dots (n-2) + \frac{(-1)^{n-2}}{2} \right] + (-1)^{n-1} (n-1) \\ &= (n-1) \left[\frac{(n-1)!}{2} \sum_{i=0}^{n-3} \frac{(-1)^i}{i!} + \frac{(n-2)!}{2} \sum_{i=0}^{n-4} \frac{(-1)^i}{i!} + (-1)^{n-2} \right] \\ &+ (-1)^{n-1} (n-1) \\ &= (n-1) \left[\frac{(n-1)!}{2} \sum_{i=0}^{n-3} \frac{(-1)^i}{i!} + \frac{(-1)^{n-2}(n-2)}{1} + \frac{(n-2)!}{2} \sum_{i=0}^{n-4} \frac{(-1)^i}{i!} \right. \\ &+ \frac{(-1)^{n-3}(n-3)}{1} \right] + (-1)^{n-1} (n-1) \\ &= (n-1)(e_{n-1} + e_{n-2}) + (-1)^{n-1} (n-1), \end{split}$$

as required.

(b) As in (a) above, using Theorem 2.1 and algebraic manipulations successively we have

$$e_n = \frac{n!}{2} \sum_{i=0}^{n-2} \frac{(-1)^i}{i!} + (-1)^{n-1} (n-1)$$

= $n \left[\frac{(n-1)!}{2} \sum_{i=0}^{n-3} \frac{(-1)^i}{i!} + \frac{(n-1)!}{2} \cdot \frac{(-1)^{n-2}}{(n-2)!} \right] + (-1)^{n-1} (n-1)$
= $n \left[\frac{(n-1)!}{2} \sum_{i=0}^{n-3} \frac{(-1)^i}{i!} + \frac{(n-1)}{2} \cdot (-1)^{n-2} \right] + (-1)^{n-1} (n-1)$

Some Combinatorial Properties of the Alternating Group

$$= n \left[\frac{(n-1)!}{2} \sum_{i=0}^{n-3} \frac{(-1)^i}{i!} + (-1)^{n-2}(n-2) - \frac{(-1)^{n-2}}{2} \cdot (n-3) \right]$$

+(-1)^{n-1}(n-1)
= $ne_{n-1} + (-1)^{n-1} \frac{1}{2}n(n-3) + (-1)^{n-1}(n-1)$
= $ne_{n-1} + (-1)^{n-1} \frac{1}{2}(n-2)(n+1),$

as required.

We now turn our attention to finding the number of odd permutations with k fixed points. Let

$$e'(n,k) = |\{\alpha \in A'_n : f(\alpha) = k\}|.$$
(2.3)

Then it is not difficult to see that

$$e'(n,k) = \binom{n}{k} e'(n-k,0) = \binom{n}{k} e'_{n-k}.$$
(2.4)

As in the even case above, to compute e'(n,k) it is sufficient to compute $e'(n,0) = e'_n$. Also, note that e'_n is the number of odd permutations without fixed points, that is, the number of odd derangements. We can certainly deduce results for e'_n in exactly the same manner as above, however, we shall take advantage of Theorem 2.1 and Result 1.1, since it is clear that

$$\begin{aligned} e_n &= d_n - e_n \\ &= n! \sum_{i=0}^n \frac{(-1)^i}{i!} - \left[\frac{n!}{2} \sum_{i=0}^{n-2} \frac{(-1)^i}{i!} + (-1)^{n-1} (n-1) \right] \\ &= \frac{n!}{2} \sum_{i=0}^{n-2} \frac{(-1)^i}{i!}. \end{aligned}$$

Thus we have proved the following result

Theorem 2.3 Let e'_{n} be as defined in (2.4). Then $e'_{n} = \frac{n!}{2} \sum_{i=0}^{n-2} \frac{(-1)^{i}}{i!}$.

Proposition 2.4 Let e'_n be as defined in (2.4). Then

(a)
$$e'_{n} = (n-1)(e'_{n-1} + e'_{n-2}) + (-1)^{n}(n-1), e'_{0} = e'_{1} = 0;$$

(b) $e'_{n} = ne'_{n-1} + (-1)^{n}(n-1)(n-2)/2, e'_{0} = 0.$

Proof. It follows directly from Result 1.1 and Proposition 2.2.

Alternative recurrences the first of which is in [12] are

Proposition 2.5 Let e_n and e'_n be as defined in (2.2) and (2.4), respectively. Then

(a)
$$e_n = \frac{1}{2} [d_n - (-1)^n (n-1)], d_0 = 1;$$

(b) $e'_n = \frac{1}{2} [d_n + (-1)^n (n-1)], d_0 = 1.$

Remark 2.6. The sequences e(n,k) and e'(n,k) with the exception of $e_n = e(n,0)$, as at the time of writing are not yet listed in Sloane's encyclopaedia of integer sequences [12]. For some selected values of e(n,k) and e'(n,k) see Tables 1 and 2, respectively.

$n\backslash k$	0	1	2	3	4	5	6	7	$\Sigma e(n,k)$
 0	1								1
1	0	1							1
2	0	0	1						1
3	2	0	0	1					3
4	3	8	0	0	1				12
5	24	15	20	0	0	1			60
6		144		40	0	0	1		360
7	930	910	504	105	70	0	0	1	2520

Table 1. e(n, k)

$n \backslash k$	0	1	2	3	4	5	6	7	$\Sigma e'(n,k)$
0	0								0
1	0	0							0
2	1	0	0						1
3	0	3	0	0					3
4	6	0	6	0	0				12
5	20	30	0	10	0	0			60
6	135	120	90	0	15	0	0		360
7	924	945	420	210	0	21	0	0	2520

Table 2. e'(n, k)

3. Generating Functions

Let f(x) be the exponential generating function for e_n . Then using Proposition

2.5, Result 1.4 and algebraic manipulations successively we see that

$$\begin{split} f(x) &= \sum_{i \ge 0} e_i \frac{x^i}{i!} = \sum_{i \ge 0} \frac{1}{2} \left[d_i - (-1)^i (i-1) \right] \frac{x^i}{i!} \\ &= \frac{1}{2} \sum_{i \ge 0} d_i \frac{x^i}{i!} - \frac{1}{2} \sum_{i \ge 0} (-1)^i (i-1) \frac{x^i}{i!} \\ &= \frac{1}{2} \frac{e^{-x}}{1-x} + \frac{x}{2} \sum_{i \ge 1} (-1)^{i-1} \frac{x^{i-1}}{(i-1)!} + \frac{1}{2} \sum_{i \ge 0} (-1)^i \frac{x^i}{i!} \\ &= \frac{1}{2} \frac{e^{-x}}{1-x} + \frac{x}{2} e^{-x} + \frac{1}{2} e^{-x} \\ &= \frac{(1-x^2/2)}{1-x} e^{-x}. \end{split}$$

Proposition 3.1 Let $f_k(x)$ be the exponential generating function for $e_{i,k} = \binom{i}{k} e_{i-k}$. Then $f_k(x) = \frac{x^k(1-x^2/2)e^{-x}}{k!(1-x)}$.

Proof.

lhs =
$$f_k(x) = \sum_{i \ge k} \frac{\binom{i}{k} e_{i-k} \cdot x^i}{i!}$$

= $\sum_{i \ge k} \frac{e_{i-k} x^i}{k! (i-k)!}$
= $\frac{x^k}{k!} \sum_{i \ge k} \frac{e_{i-k} x^{i-k}}{(i-k)!}$
= $\frac{x^k}{k!} f(x) = \frac{x^k (1-x^2/2)e^{-x}}{k! (1-x)} = \text{rhs},$

as required.

Proposition 3.2 Let $g_k(x)$ be the exponential generating function for $e'(i,k) = \binom{i}{k} e'_{i-k}$. Then $g_k(x) = \frac{x^k (x^2/2)e^{-x}}{k!(1-x)}$.

Proof. From the obvious fact that d(i,k) = e(i,k) + e'(i,k), Result 1.4 and

Proposition 3.1 it follows that

$$\frac{x^k e^{-x}}{k!(1-x)} = \sum_{i \ge k} d(i,k) \frac{x^i}{i!} = \sum_{i \ge r} [e(i,r) + e'(i,r)] \frac{x^i}{i!}$$
$$= \sum_{i \ge k} e(i,k) \frac{x^i}{i!} + \sum_{i \ge k} e'(i,k) \frac{x^i}{i!}$$
$$= \frac{x^k (1-x^2/2) e^{-x}}{k!(1-x)} + g_k(x).$$

Hence the result follows.

-

Acknowledgment. The authors would like to gratefully acknowledge support from the King Fahd University of Petroleum and Minerals. In particular, the first-named author would like to thank Prof. Al-Bar for his encouragement and support, and the Department of Mathematical Sciences for granting him a research visiting position.

References

- [1] V.K. Balakrishnan: Combinatorics: Including Concepts of Graph Theory, Schaum's Outline Series, McGraw Hill Inc. 1995.
- [2] N. Boston, et. al.: The proportion of fixed-point-free elements of a transitive permutation group, *Communications in Algebra* 21(9), 3259-3275 (1993).
- [3] P J. Cameron: Combinatorics: Topics, Techniques, Algorithms, Cambridge University Press, New York, 1994.
- [4] P J. Cameron: Sequences realized by oligomorphic permutation groups. J. Integer Seq. 3, 00.1.5 (2000).
- [5] L. Comtet: Advanced Combinatorics: the Art of Finite and Infinite Expansions, D. Reidel Publishing Company, Dordrecht, Holland, 1974.
- [6] J.A. Gallian: Contemporary Abstract Algebra, Houghton Mifflin, Boston/New York, 1998.
- [7] O. Ganyushkin and V. Mazorchuk: Combinatorics of nilpotents in symmetric inverse semigroups, Ann. Comb. 8, 161-175 (2004).
- [8] G.M.S. Gomes and J.M. Howie: Nilpotents in finite symmetric inverse semigroups, Proc. Edinburgh Math. Soc. 30, 383-395 (1987).
- [9] A. Laradji and A. Umar: Combinatorial results for the symmetric inverse semigroup, Semigroup Forum 75, 221-236 (2007).
- [10] A.M. Odlyzko: Asymptotic Enumeration Methods: Handbook of Combinatorics, Vol. 1, 2, 1063-1229, Elsevier, Amsterdam, 1995.
- [11] Problem E2354, Amer. Math. Monthly 79, 394 (1972).
- [12] N.J.A. Sloane: The On-Line Encyclopedia of Integer Sequences, available at http://www.research.att.com/ njas/sequences/.