# Some Combinatorial Properties of the Alternating Group 

Bashir Ali<br>Department of Mathematics, Nigerian Defence Academy University, Kaduna, Nigeria E-mail: bashirklgi@yahoo.com

A. Umar

Department of Mathematics Statistics, Sultan Qaboos University, Al-Khod 123, Muscat, Sultanate of Oman
E-mail: aumarh@squ.edu.om

2000 Mathematics Subject Classification: 20B35, 05A10, 05A15


#### Abstract

In this note we obtain and discuss formulae for the number of even permutations (of an $n$-element set) having exactly $k$ fixed points. Moreover, we obtain generating functions for these numbers. We also obtain similar results for the number of odd permutations.


Keywords: Permutation; Derangement; Even (odd) permutation; Partial one-one transformation; Exponential generating function.

## 1. Introduction and Preliminaries

Let $X_{n}=\{1,2, \ldots n\}$ be a finite $n$-element set, and let $S_{n}$ and $A_{n}$ be the symmetric and alternating groups of $X_{n}$, respectively. Another closely related algebraic structure to $S_{n}$ and $A_{n}$ is $I_{n}$, the semigroup of partial one-one transformations of $X_{n}$. This semigroup is also known as the finite symmetric inverse semigroup of $X_{n}$. This paper investigates certain combinatorial properties of $A_{n}$.

Combinatorial properties of $S_{n}$ have been studied over a long period and many interesting and delightful results have emerged (see, for example [1, 3, 4, $5,12]$ ). In particular, the number of permutations (of $X_{n}$ ) having exactly $k$ fixed points and their generating functions are known [12]. Recently, inspired by the works of Gomes and Howie[8], Laradji and Umar [9] obtained some corresponding results in the semigroup $I_{n}$. However, the number of even (odd) permutations

[^0](of $X_{n}$ ) having exactly $k$ fixed points and their generating functions do not seem to have been studied. The only exception is the number of even derangements (permutations without fixed points) which we found in [12] recorded as sequence number $A 003221$, see also [11]. The number of even derangements could also be easily deduced from [2, Corollary 2.7]. At the end of this introductory section we gather some known combinatorial results that we shall need in later sections. In Section 2 we establish certain combinatorial results for $A_{n}$, the main result being proposition 2.2 which gives recurrence formulae for $e_{n}$, the number of even derangements $\alpha$ (of $X_{n}$ ), having observed that the number of permutations with exactly $k$ fixed points can be deduced from the number of derangements. In Section 3 we obtain exponential generating functions for the number of even permutations with exactly $k$ fixed points, and deduce that for the number of odd permutations with exactly $k$ fixed points.

Recall from [6] that an even permutation is a permutation which can be expressed as a product of an even number of cycles of even length and/or a product of any number of cycles of odd length. A permutation that is not even is called odd. The set of even permutations of $X_{n}$, called the alternating group is usually denoted by $A_{n}$.

Recall also that, a derangement $\sigma$ is a permutation such that $\sigma(x) \neq x$, that is, a permutation without fixed points. The number of derangements of $X_{n}$ is usually denoted by $d_{n}$, while the number of permutations having exactly $k$ fixed points will be denoted by $d(n, k)$. We list some known combinatorial results which may be found in $[1,3,12]$, that we shall need later.
Result 1.1 Let $d_{n}$ be as defined above. Then

$$
d_{n}=n!\sum_{i=0}^{n} \frac{(-1)^{i}}{i!}=(n-1)\left(d_{n-1}+d_{n-2}\right)=n d_{n-1}+(-1)^{n},
$$

where $d_{0}=1$.
Result $1.2 \quad[10$, p. 24]. Suppose that $X$ is some set of objects and $P$ is a set of properties. For $R \subseteq P$, let $N_{=}(R)$ be the number of objects in $X$ that have exactly the properties in $R$ and none of the properties in $P \backslash R$. We let $N_{\geq}(R)$ denote the number of objects in $X$ that have all the properties in $R$ and possibly some of those in $P \backslash R$. The principle of inclusion-exclusion says that

$$
N_{=}(R)=\sum_{R \subseteq Q \subseteq P}(-1)^{|Q \backslash R|} N_{\geq}(Q) .
$$

Result 1.3 Let $A_{n}$ be the alternating group on $X_{n}$. Then $\left|A_{n}\right|=n!/ 2(n \geq 2)$, where $\left|A_{0}\right|=1=\left|A_{1}\right|$.

Result 1.4 Let $d(x, k)=\sum_{n \geq 0} \frac{d(n, k)}{n!} x^{n}$. Then $d(x, k)$ converges for $|x|<1$ to the function $\frac{x^{k} e^{-x}}{k!(1-x)}$.

Corollary 1.5 Let $d(x)=\sum_{n \geq 0} \frac{d_{n}}{n!} x^{n}$. Then $d(x)$ converges for $|x|<1$ to the function $\frac{e^{-x}}{(1-x)}$.

## 2. Even and Odd Permutations

As in [9] we define an equivalence on $A_{n}$ by the equality of number of fixed points, that is,

$$
\begin{equation*}
e(n, k)=\left|\left\{\alpha \in A_{n}: f(\alpha)=k\right\}\right|, \tag{2.1}
\end{equation*}
$$

where $f(\alpha)=\left|\left\{x \in X_{n}: x \alpha=x\right\}\right|$. Then it is not difficult to see that

$$
\begin{equation*}
e(n, k)=\binom{n}{k} e(n-k, 0)=\binom{n}{k} e_{n-k} \tag{2.2}
\end{equation*}
$$

Thus to compute $e(n, k)$ it is sufficient to compute $e(n, 0)=e_{n}$. However, note that $e_{n}$ is the number of even permutations without fixed points, that is, the number of even derangements. Now we have

Theorem 2.1 Let $e_{n}$ be as defined in (2.2). Then $e_{0}=1, e_{1}=0$, and for all $n \geq 2$, we have

$$
e_{n}=\frac{n!}{2} \sum_{i=0}^{n-2} \frac{(-1)^{i}}{i!}+(-1)^{n-1}(n-1)
$$

Proof. By the Inclusion-Exclusion Principle we see that

$$
\begin{aligned}
e_{n} & =\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}\left|A_{n-i}\right|=\sum_{i=0}^{n-2}(-1)^{i}\binom{n}{i}\left|A_{n-i}\right|+(-1)^{n-1} n+(-1)^{n} \\
& =\sum_{i=0}^{n-2}(-1)^{i} \frac{n!}{(n-i)!i!} \cdot \frac{(n-i)!}{2}+(-1)^{n-1}(n-1) \\
& =\frac{n!}{2} \sum_{i=0}^{n-2} \frac{(-1)^{i}}{i!}+(-1)^{n-1}(n-1) .
\end{aligned}
$$

The number $e_{n}$ satisfies some recurrences similar to those for $d_{n}$ in Result 1.1.

Proposition 2.2 Let $e_{n}$ be as defined in (2.2). Then
(a) $e_{n}=(n-1)\left(e_{n-1}+e_{n-2}\right)+(-1)^{n-1}(n-1), e_{0}=1, e_{1}=0$;
(b) $e_{n}=n e_{n-1}+(-1)^{n}(n-2)(n+1) / 2, e_{0}=1$.

Proof. (a) Using Theorem 2.1 and algebraic manipulations successively we have

$$
\begin{aligned}
e_{n}= & \frac{n!}{2} \sum_{i=0}^{n-2} \frac{(-1)^{i}}{i!}+(-1)^{n-1}(n-1) \\
= & (n-1)\left[\frac{\{(n-1)+1\}(n-2)!}{2} \sum_{i=0}^{n-2} \frac{(-1)^{i}}{i!}\right]+(-1)^{n-1}(n-1) \\
= & (n-1)\left[\frac{(n-1)(n-2)!}{2} \sum_{i=0}^{n-2} \frac{(-1)^{i}}{i!}+\frac{(n-2)!}{2} \sum_{i=0}^{n-2} \frac{(-1)^{i}}{i!}\right] \\
& +(-1)^{n-1}(n-1) \\
= & (n-1)\left[\frac{(n-1)!}{2} \sum_{i=0}^{n-3} \frac{(-1)^{i}}{i!}+\frac{(n-1)!}{2} \cdot \frac{(-1)^{n-2}}{(n-2)!}+\frac{(n-2)!}{2} \sum_{i=0}^{n-4} \frac{(-1)^{i}}{i!}\right. \\
& \left.+\frac{(n-2)!}{2} \cdot \frac{(-1)^{n-3}}{(n-3)!}+\frac{(n-2)!}{2} \cdot \frac{(-1)^{n-2}}{(n-2)!}\right]+(-1)^{n-1}(n-1) \\
= & (n-1)\left[\frac{(n-1)!}{2} \sum_{i=0}^{n-3} \frac{(-1)^{i}}{i!}+\frac{(-1)^{n-2}}{2} \cdot(n-1)+\frac{(n-2)!}{2} \sum_{i=0}^{n-4} \frac{(-1)^{i}}{i!}\right. \\
& \left.+\frac{(-1)^{n-3}}{2} \cdot(n-2)+\frac{(-1)^{n-2}}{2}\right]+(-1)^{n-1}(n-1) \\
= & (n-1)\left[\frac{(n-1)!}{2} \sum_{i=0}^{n-3} \frac{(-1)^{i}}{i!}+\frac{(n-2)!}{2} \sum_{i=0}^{n-4} \frac{(-1)^{i}}{i!}+(-1)^{n-2}\right] \\
& +(-1)^{n-1}(n-1) \\
= & (n-1)\left[\frac{(n-1)!}{2} \sum_{i=0}^{n-3} \frac{(-1)^{i}}{i!}+\frac{(-1)^{n-2}(n-2)}{1}+\frac{(n-2)!}{2} \sum_{i=0}^{n-4} \frac{(-1)^{i}}{i!}\right. \\
= & \left.+\frac{(-1)^{n-3}(n-3)}{1}\right]+(-1)^{n-1}(n-1) \\
& (n-1)\left(e_{n-1}+e_{n-2}\right)+(-1)^{n-1}(n-1),
\end{aligned}
$$

as required.
(b) As in (a) above, using Theorem 2.1 and algebraic manipulations successively we have

$$
\begin{aligned}
e_{n} & =\frac{n!}{2} \sum_{i=0}^{n-2} \frac{(-1)^{i}}{i!}+(-1)^{n-1}(n-1) \\
& =n\left[\frac{(n-1)!}{2} \sum_{i=0}^{n-3} \frac{(-1)^{i}}{i!}+\frac{(n-1)!}{2} \cdot \frac{(-1)^{n-2}}{(n-2)!}\right]+(-1)^{n-1}(n-1) \\
& =n\left[\frac{(n-1)!}{2} \sum_{i=0}^{n-3} \frac{(-1)^{i}}{i!}+\frac{(n-1)}{2} \cdot(-1)^{n-2}\right]+(-1)^{n-1}(n-1)
\end{aligned}
$$

$$
\begin{aligned}
= & n\left[\frac{(n-1)!}{2} \sum_{i=0}^{n-3} \frac{(-1)^{i}}{i!}+(-1)^{n-2}(n-2)-\frac{(-1)^{n-2}}{2} \cdot(n-3)\right] \\
& +(-1)^{n-1}(n-1) \\
= & n e_{n-1}+(-1)^{n-1} \frac{1}{2} n(n-3)+(-1)^{n-1}(n-1) \\
= & n e_{n-1}+(-1)^{n-1} \frac{1}{2}(n-2)(n+1),
\end{aligned}
$$

as required.

We now turn our attention to finding the number of odd permutations with $k$ fixed points. Let

$$
\begin{equation*}
e^{\prime}(n, k)=\left|\left\{\alpha \in A_{n}^{\prime}: f(\alpha)=k\right\}\right| . \tag{2.3}
\end{equation*}
$$

Then it is not difficult to see that

$$
\begin{equation*}
e^{\prime}(n, k)=\binom{n}{k} e^{\prime}(n-k, 0)=\binom{n}{k} e_{n-k}^{\prime} \tag{2.4}
\end{equation*}
$$

As in the even case above, to compute $e^{\prime}(n, k)$ it is sufficient to compute $e^{\prime}(n, 0)=$ $e_{n}^{\prime}$. Also, note that $e_{n}^{\prime}$ is the number of odd permutations without fixed points, that is, the number of odd derangements. We can certainly deduce results for $e_{n}^{\prime}$ in exactly the same manner as above, however, we shall take advantage of Theorem 2.1 and Result 1.1, since it is clear that

$$
\begin{aligned}
e_{n}^{\prime} & =d_{n}-e_{n} \\
& =n!\sum_{i=0}^{n} \frac{(-1)^{i}}{i!}-\left[\frac{n!}{2} \sum_{i=0}^{n-2} \frac{(-1)^{i}}{i!}+(-1)^{n-1}(n-1)\right] \\
& =\frac{n!}{2} \sum_{i=0}^{n-2} \frac{(-1)^{i}}{i!} .
\end{aligned}
$$

Thus we have proved the following result
Theorem 2.3 Let $e_{n}^{\prime}$ be as defined in (2.4). Then $e_{n}^{\prime}=\frac{n!}{2} \sum_{i=0}^{n-2} \frac{(-1)^{i}}{i!}$.

Proposition 2.4 Let $e_{n}^{\prime}$ be as defined in (2.4). Then
(a) $e_{n}^{\prime}=(n-1)\left(e_{n-1}^{\prime}+e_{n-2}^{\prime}\right)+(-1)^{n}(n-1), e_{0}^{\prime}=e_{1}^{\prime}=0$;
(b) $e_{n}^{\prime}=n e_{n-1}^{\prime}+(-1)^{n}(n-1)(n-2) / 2, e_{0}^{\prime}=0$.

Proof. It follows directly from Result 1.1 and Proposition 2.2.

Alternative recurrences the first of which is in [12] are

Proposition 2.5 Let $e_{n}$ and $e_{n}^{\prime}$ be as defined in (2.2) and (2.4), respectively. Then
(a) $e_{n}=\frac{1}{2}\left[d_{n}-(-1)^{n}(n-1)\right], d_{0}=1$;
(b) $e_{n}^{\prime}=\frac{1}{2}\left[d_{n}+(-1)^{n}(n-1)\right], d_{0}=1$.

Remark 2.6. The sequences $e(n, k)$ and $e^{\prime}(n, k)$ with the exception of $e_{n}=$ $e(n, 0)$, as at the time of writing are not yet listed in Sloane's encyclopaedia of integer sequences [12]. For some selected values of $e(n, k)$ and $e^{\prime}(n, k)$ see Tables 1 and 2, respectively.

| $n \backslash k$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\Sigma e(n, k)$ |  |  |  |  |  |  |  |  |
| 0 | 1 |  |  |  |  |  |  |  |
| 1 | 0 | 1 |  |  |  |  |  |  |
| 2 | 0 | 0 | 1 |  |  |  |  | 1 |
| 3 | 2 | 0 | 0 | 1 |  |  |  |  |
| 4 | 3 | 8 | 0 | 0 | 1 |  |  |  |
| 5 | 24 | 15 | 20 | 0 | 0 | 1 |  |  |
| 6 | 130 | 144 | 45 | 40 | 0 | 0 | 1 |  |
| 7 | 930 | 910 | 504 | 105 | 70 | 0 | 0 | 1 |

Table 1. $e(n, k)$

| $n \backslash k$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | $\Sigma e^{\prime}(n, k)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 |  |  |  |  |  |  |  | 0 |
| 1 | 0 | 0 |  |  |  |  |  |  | 0 |
| 2 | 1 | 0 | 0 |  |  |  |  |  | 1 |
| 3 | 0 | 3 | 0 | 0 |  |  |  |  | 3 |
| 4 | 6 | 0 | 6 | 0 | 0 |  |  |  | 12 |
| 5 | 20 | 30 | 0 | 10 | 0 | 0 |  |  | 60 |
| 6 | 135 | 120 | 90 | 0 | 15 | 0 | 0 |  | 360 |
| 7 | 924 | 945 | 420 | 210 | 0 | 21 | 0 | 0 | 2520 |

Table 2. $e^{\prime}(n, k)$

## 3. Generating Functions

Let $f(x)$ be the exponential generating function for $e_{n}$. Then using Proposition
2.5, Result 1.4 and algebraic manipulations successively we see that

$$
\begin{aligned}
f(x) & =\sum_{i \geq 0} e_{i} \frac{x^{i}}{i!}=\sum_{i \geq 0} \frac{1}{2}\left[d_{i}-(-1)^{i}(i-1)\right] \frac{x^{i}}{i!} \\
& =\frac{1}{2} \sum_{i \geq 0} d_{i} \frac{x^{i}}{i!}-\frac{1}{2} \sum_{i \geq 0}(-1)^{i}(i-1) \frac{x^{i}}{i!} \\
& =\frac{1}{2} \frac{e^{-x}}{1-x}+\frac{x}{2} \sum_{i \geq 1}(-1)^{i-1} \frac{x^{i-1}}{(i-1)!}+\frac{1}{2} \sum_{i \geq 0}(-1)^{i} \frac{x^{i}}{i!} \\
& =\frac{1}{2} \frac{e^{-x}}{1-x}+\frac{x}{2} e^{-x}+\frac{1}{2} e^{-x} \\
& =\frac{\left(1-x^{2} / 2\right)}{1-x} e^{-x} .
\end{aligned}
$$

Proposition 3.1 Let $f_{k}(x)$ be the exponential generating function for $e_{i, k}=$ $\binom{i}{k} e_{i-k}$. Then $f_{k}(x)=\frac{x^{k}\left(1-x^{2} / 2\right) e^{-x}}{k!(1-x)}$.

Proof.

$$
\begin{aligned}
\text { lhs } & =f_{k}(x)=\sum_{i \geq k} \frac{\binom{i}{k} e_{i-k} \cdot x^{i}}{i!} \\
& =\sum_{i \geq k} \frac{e_{i-k} x^{i}}{k!(i-k)!} \\
& =\frac{x^{k}}{k!} \sum_{i \geq k} \frac{e_{i-k} x^{i-k}}{(i-k)!} \\
& =\frac{x^{k}}{k!} f(x)=\frac{x^{k}\left(1-x^{2} / 2\right) e^{-x}}{k!(1-x)}=\mathrm{rhs}
\end{aligned}
$$

as required.

Proposition 3.2 Let $g_{k}(x)$ be the exponential generating function for $e^{\prime}(i, k)=$ $\binom{i}{k} e_{i-k}^{\prime}$. Then $g_{k}(x)=\frac{x^{k}\left(x^{2} / 2\right) e^{-x}}{k!(1-x)}$.

Proof. From the obvious fact that $d(i, k)=e(i, k)+e^{\prime}(i, k)$, Result 1.4 and

Proposition 3.1 it follows that

$$
\begin{aligned}
\frac{x^{k} e^{-x}}{k!(1-x)} & =\sum_{i \geq k} d(i, k) \frac{x^{i}}{i!}=\sum_{i \geq r}\left[e(i, r)+e^{\prime}(i, r)\right] \frac{x^{i}}{i!} \\
& =\sum_{i \geq k} e(i, k) \frac{x^{i}}{i!}+\sum_{i \geq k} e^{\prime}(i, k) \frac{x^{i}}{i!} \\
& =\frac{x^{k}\left(1-x^{2} / 2\right) e^{-x}}{k!(1-x)}+g_{k}(x) .
\end{aligned}
$$

Hence the result follows.

Acknowledgment. The authors would like to gratefully acknowledge support from the King Fahd University of Petroleum and Minerals. In particular, the first-named author would like to thank Prof. Al-Bar for his encouragement and support, and the Department of Mathematical Sciences for granting him a research visiting position.

## References

[1] V.K. Balakrishnan: Combinatorics: Including Concepts of Graph Theory, Schaum's Outline Series, McGraw Hill Inc. 1995.
[2] N. Boston, et. al.: The proportion of fixed-point-free elements of a transitive permutation group, Communications in Algebra 21(9), 3259-3275 (1993).
[3] P J. Cameron: Combinatorics: Topics, Techniques, Algorithms, Cambridge University Press, New York, 1994.
[4] P J. Cameron: Sequences realized by oligomorphic permutation groups. J. Integer Seq. 3, 00.1.5 (2000).
[5] L. Comtet: Advanced Combinatorics: the Art of Finite and Infinite Expansions, D. Reidel Publishing Company, Dordrecht, Holland, 1974.
[6] J.A. Gallian: Contemporary Abstract Algebra, Houghton Mifflin, Boston/New York, 1998.
[7] O. Ganyushkin and V. Mazorchuk: Combinatorics of nilpotents in symmetric inverse semigroups, Ann. Comb. 8, 161-175 (2004).
[8] G.M.S. Gomes and J.M. Howie: Nilpotents in finite symmetric inverse semigroups, Proc. Edinburgh Math. Soc. 30, 383-395 (1987).
[9] A. Laradji and A. Umar: Combinatorial results for the symmetric inverse semigroup, Semigroup Forum 75, 221-236 (2007).
[10] A.M. Odlyzko: Asymptotic Enumeration Methods: Handbook of Combinatorics, Vol. 1, 2, 1063-1229, Elsevier, Amsterdam, 1995.
[11] Problem E2354, Amer. Math. Monthly 79, 394 (1972).
[12] N.J.A. Sloane: The On-Line Encyclopedia of Integer Sequences, available at http://www.research.att.com/ njas/sequences/.


[^0]:    Received December 7 2005, Accepted September 192007.

